Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(51): 11750-11757, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38117179

RESUMO

The origin of in vitro amyloid fibril polymorphs is debated, in part, because few techniques can simultaneously monitor the formation kinetics of multiple amyloid polymorphs. Using a cross-peak specific polarization scheme, ⟨0°,0°,60°,-60°⟩, we resolve 22 previously unseen cross peaks in the 2D IR spectra of amyloid fibrils formed by the human islet amyloid polypeptide (hIAPP). Those cross peaks include a subset assigned to a second fibril polymorph, which forms on a slower time scale. We simulated the data with three different kinetic models for polymorph formation. Only a model based on secondary nucleation reproduces the cross peak kinetics. These experiments are evidence that fibrils formed by secondary nucleation have a different polymorphic structure than the parent fibrils and illustrate the enhanced structural resolution of this new cross peak specific polarization scheme.


Assuntos
Amiloide , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Humanos , Amiloide/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Espectrofotometria Infravermelho , Cinética
2.
RSC Chem Biol ; 3(7): 931-940, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35866164

RESUMO

The aggregation of human islet amyloid polypeptide (hIAPP) into amyloid fibrils involves formation of oligomeric intermediates that are thought to be the cytotoxic species responsible for ß-cell dysfunction in type 2 diabetes. hIAPP oligomers permeating or disrupting the cellular membrane may be one mechanism of toxicity and so measuring the structural kinetics of aggregation in the presence of membranes is of much interest. In this study, we use 2D IR spectroscopy and 13C18O isotope labeling to study the secondary structure of the oligomeric intermediates formed in solution and in the presence of phospholipid vesicles at sites L12A13, L16V17, G24A25 and V32G33. Pairs of labels monitor the couplings between associated polypeptides and the dihedral angles between adjacent residues. In solution, the L12A13 residues form an oligomeric ß-sheet in addition to an α-helix whereas with the phospholipid vesicles they are α-helical throughout the aggregation process. In both solution and with DOPC vesicles, L16V17 and V32G33 have disordered structures until fibrils are formed. Similarly, under both conditions, G24A25 exhibits 3-state kinetics, created by an oligomeric intermediate with a well-defined ß-sheet structure. Amyloid fibril formation is often thought to involve intermediates with exceedingly low populations that are difficult to detect experimentally. These experiments establish that amyloid fibril formation of hIAPP when catalyzed by membranes includes a metastable intermediate and that this intermediate has a similar structure at G24A25 in the FGAIL region as the corresponding intermediate in solution, thought to be the toxic species.

3.
PLoS One ; 16(9): e0257098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34520490

RESUMO

αB-crystallin is a small heat shock protein that forms a heterooligomeric complex with αA-crystallin in the ocular lens. It is also widely distributed in tissues throughout the body and has been linked with neurodegenerative diseases such as Alzheimer's, where it is associated with amyloid fibrils. Crystallins can form amorphous aggregates in cataracts as well as more structured amyloid-like fibrils. The arginine 120 to glycine (R120G) mutation in αB-crystallin (Cryab-R120G) results in high molecular weight crystallin protein aggregates and loss of the chaperone activity of the protein in vitro, and it is associated with human hereditary cataracts and myopathy. Characterizing the amorphous (unstructured) versus the highly ordered (amyloid fibril) nature of crystallin aggregates is important in understanding their role in disease and important to developing pharmacological treatments for cataracts. We investigated protein secondary structure in wild-type (WT) and Cryab-R120G knock-in mutant mouse lenses using two-dimensional infrared (2DIR) spectroscopy, which has been used to detect amyloid-like fibrils in human lenses and measure UV radiation-induced changes in porcine lenses. Our goal was to compare the aggregated proteins in this mouse lens model to human lenses and evaluate the protein structural relevance of the Cryab-R120G knock-in mouse model to general age-related cataract disease. In the 2DIR spectra, amide I diagonal peak frequencies were red-shifted to smaller wavenumbers in mutant mouse lenses as compared to WT mouse lenses, consistent with an increase in ordered secondary structure. The cross peak frequency and intensity indicated the presence of amyloid in the mutant mouse lenses. While the diagonal and cross peak changes in location and intensity from the 2DIR spectra indicated significant structural differences between the wild type and mutant mouse lenses, these differences were smaller than those found in human lenses; thus, the Cryab-R120G knock-in mouse lenses contain less amyloid-like secondary structure than human lenses. The results of the 2DIR spectroscopy study confirm the presence of amyloid-like secondary structure in Cryab-R120G knock-in mice with cataracts and support the use of this model to study age-related cataract.


Assuntos
Amiloide/metabolismo , Catarata/genética , Técnicas de Introdução de Genes , Espectrofotometria Infravermelho , Cadeia B de alfa-Cristalina/química , Cadeia B de alfa-Cristalina/genética , Animais , Modelos Animais de Doenças , Formaldeído , Humanos , Cristalino/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Mutantes/metabolismo , Inclusão em Parafina , Estrutura Secundária de Proteína , Fixação de Tecidos
4.
J Phys Chem B ; 125(33): 9517-9525, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34396779

RESUMO

We used two-dimensional IR bioimaging to study the structural heterogeneity of formalin-fixed mouse pancreas. Images were generated from the hyperspectral data sets by plotting quantities associated with the amide I vibrational mode, which is created by the backbone carbonyl stretch. Images that measure the fundamental vibrational frequencies, cross peaks, and anharmonic shifts are presented. Histograms are generated for each quantity, providing averaged values and distributions around the mean that serve as metrics for protein structures. Images were generated from tissue that had been stored in a formalin fixation for 3, 8, and 48 weeks. Over this period, all three metrics show that that the ß-sheet content of the samples increased, consistent with protein aggregation. Our results indicate that formalin fixation does not entirely arrest the degradation of a protein structure in pancreas tissue.


Assuntos
Formaldeído , Proteínas , Amidas , Animais , Camundongos , Pâncreas/diagnóstico por imagem , Proteólise
5.
Opt Express ; 28(22): 33584-33602, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33115018

RESUMO

The majority of 2D IR spectrometers operate at 1-10 kHz using Ti:Sapphire laser technology. We report a 2D IR spectrometer designed around Yb:KGW laser technology that operates shot-to-shot at 100 kHz. It includes a home-built OPA, a mid-IR pulse shaper, and custom-designed electronics with optional on-chip processing. We report a direct comparison between Yb:KGW and Ti:Sapphire based 2D IR spectrometers. Even though the mid-IR pulse energy is much lower for the Yb:KGW driven system, there is an 8x improvement in signal-to-noise over the 1 kHz Ti:Sapphire driven spectrometer to which it is compared. Experimental data is shown for sub-millimolar concentrations of amides. Advantages and disadvantages of the design are discussed, including thermal background that arises at high repetition rates. This fundamental spectrometer design takes advantage of newly available Yb laser technology in a new way, providing a straightforward means of enhancing sensitivity.

6.
J Phys Chem Lett ; 11(15): 6382-6388, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32706257

RESUMO

There is enormous interest in measuring amyloid fibril structures, but most structural studies measure fibril formation in vitro using aqueous buffer. Ideally, one would like to measure fibril structure and mechanism under more physiological conditions. Toward this end, we have developed a method for studying amyloid fibril structure in human serum. Our approach uses isotope labeling, antibody depletion of the most abundant proteins (albumin and IgG), and infrared spectroscopy to measure aggregation in human serum with reduced protein content. Reducing the nonamyloid protein content enables the measurements by decreasing background signals but retains the full composition of salts, sugars, metal ions, etc. that are naturally present but usually missing from in vitro studies. We demonstrate the method by measuring the two-dimensional infrared (2D IR) spectra of isotopically labeled human islet amyloid polypeptide (hIAPP or amylin). We find that the fibril structure of hIAPP formed in serum differs from that formed via aggregation in aqueous buffer at residues Gly24 and Ala25, which reside in the putative "amyloidogenic core" or FGAIL region of the sequence. The spectra are consistent with extended parallel stacks of strands consistent with ß-sheet-like structure, rather than a partially disordered loop that forms in aqueous buffer. These experiments provide a new method for using infrared spectroscopy to monitor the structure of proteins under physiological conditions and reveal the formation of a significantly different polymorph structure in the most important region of hIAPP.


Assuntos
Amiloide/química , Fragmentos de Peptídeos/química , Espectrofotometria Infravermelho/métodos , Sequência de Aminoácidos , Humanos , Marcação por Isótopo , Agregados Proteicos , Conformação Proteica , Soro/química , Água/química
7.
Biochem Biophys Res Commun ; 493(4): 1504-1509, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-28986260

RESUMO

Tau misfolding has been implicated in a variety of tauopathies, including Alzheimer's disease. The microtubule binding domain of tau consists of four repeat segments (R1-R4), and aggregation of these segments leads to the formation of neurofibrillary tangles. Previous studies indicate that misfolded tau associates with anionic phospholipid membranes, invoking structural transformations that could play a role in aggregation. Here, we investigated the role of membrane surface charge on the binding affinity of individual tau repeat segments, and whether these segments exhibit lytic activity. We quantified the thermodynamics of this process in terms of the affinity (Kd), enthalpy (ΔH), entropy (ΔS), and change in specific heat capacity (ΔCp). While neutral membranes exhibited weak interactions with each tau repeat segment, segments R2 and R3 exhibited relatively strong binding with anionic membranes with favorable ΔS and a negative value of ΔCp. Calcein leakage assays show that each repeat segment displays lytic activity, but only upon the interaction with anionic membranes. Taken together, these results distinguish the relative selectivity for anionic membranes by each repeat segment and the degree of membrane disruption that results.


Assuntos
Proteínas tau/química , Sequência de Aminoácidos , Calorimetria/métodos , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Agregação Patológica de Proteínas , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Sequências Repetitivas de Aminoácidos , Tauopatias/etiologia , Tauopatias/genética , Tauopatias/metabolismo , Termodinâmica , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...